إدخال مسألة...
الرياضيات الأساسية الأمثلة
خطوة 1
خطوة 1.1
أخرِج العامل من .
خطوة 1.1.1
أخرِج العامل من .
خطوة 1.1.2
أخرِج العامل من .
خطوة 1.1.3
أخرِج العامل من .
خطوة 1.2
اختزِل العبارة بحذف العوامل المشتركة.
خطوة 1.2.1
أخرِج العامل من .
خطوة 1.2.2
ألغِ العامل المشترك.
خطوة 1.2.3
أعِد كتابة العبارة.
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
تتمثل خطوات إيجاد المضاعف المشترك الأصغر لـ فيما يلي:
1. أوجِد المضاعف المشترك الأصغر للجزء الرقمي .
2. أوجِد المضاعف المشترك الأصغر للجزء المتغير .
3. أوجِد المضاعف المشترك الأصغر للجزء المتغير المركب .
4. اضرب كل مضاعف مشترك أصغر معًا.
خطوة 2.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.4
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.5
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.8
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.9
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.10
المضاعف المشترك الأصغر لبعض الأعداد هو أصغر عدد تمثل الأعداد عوامله.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.2
أعِد كتابة العبارة.
خطوة 3.2.2
طبّق خاصية التوزيع.
خطوة 3.2.3
اضرب في .
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
بسّط كل حد.
خطوة 3.3.1.1
ألغِ العامل المشترك لـ .
خطوة 3.3.1.1.1
أخرِج العامل من .
خطوة 3.3.1.1.2
ألغِ العامل المشترك.
خطوة 3.3.1.1.3
أعِد كتابة العبارة.
خطوة 3.3.1.2
اضرب في .
خطوة 3.3.1.3
طبّق خاصية التوزيع.
خطوة 3.3.1.4
اضرب في .
خطوة 3.3.1.5
انقُل إلى يسار .
خطوة 3.3.2
جمّع الحدود المتعاكسة في .
خطوة 3.3.2.1
اطرح من .
خطوة 3.3.2.2
أضف و.
خطوة 4
خطوة 4.1
اطرح من كلا المتعادلين.
خطوة 4.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 4.2.1
أخرِج العامل من .
خطوة 4.2.1.1
أعِد ترتيب العبارة.
خطوة 4.2.1.1.1
انقُل .
خطوة 4.2.1.1.2
أعِد ترتيب و.
خطوة 4.2.1.2
أخرِج العامل من .
خطوة 4.2.1.3
أخرِج العامل من .
خطوة 4.2.1.4
أعِد كتابة بالصيغة .
خطوة 4.2.1.5
أخرِج العامل من .
خطوة 4.2.1.6
أخرِج العامل من .
خطوة 4.2.2
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
خطوة 4.2.2.1
أعِد كتابة بالصيغة .
خطوة 4.2.2.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 4.2.2.3
أعِد كتابة متعدد الحدود.
خطوة 4.2.2.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 4.3
اقسِم كل حد في على وبسّط.
خطوة 4.3.1
اقسِم كل حد في على .
خطوة 4.3.2
بسّط الطرف الأيسر.
خطوة 4.3.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 4.3.2.2
اقسِم على .
خطوة 4.3.3
بسّط الطرف الأيمن.
خطوة 4.3.3.1
اقسِم على .
خطوة 4.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5
أضف إلى كلا المتعادلين.